Spectral method for matching exterior and interior elliptic problems

نویسنده

  • Piotr Boronski
چکیده

A spectral method is described for solving coupled elliptic problems on an interior and an exterior domain. The method is formulated and tested on the two-dimensional interior Poisson and exterior Laplace problems, whose solutions and their normal derivatives are required to be continuous across the interface. A complete basis of homogeneous solutions for the interior and exterior regions, corresponding to all possible Dirichlet boundary values at the interface, are calculated in a preprocessing step. This basis is used to construct the influence matrix which serves to transform the coupled boundary conditions into conditions on the interior problem. Chebyshev approximations are used to represent both the interior solutions and the boundary values. A standard Chebyshev spectral method is used to calculate the interior solutions. The exterior harmonic solutions are calculated as the convolution of the free-space Green’s function with a surface density; this surface density is itself the solution to an integral equation which has an analytic solution when the boundary values are given as a Chebyshev expansion. Properties of Chebyshev approximations insure that the basis of exterior harmonic functions represents the external near-boundary solutions uniformly. The method is tested by calculating the electrostatic potential resulting from charge distributions in a rectangle. The resulting influence matrix is well-conditioned and solutions converge exponentially as the resolution is increased. The generalization of this approach to three-dimensional problems is discussed, in particular the magnetohydrodynamic equations in a finite cylindrical domain surrounded by a vacuum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost optimal interior penalty discontinuous approximations of symmetric elliptic problems on non-matching grids

We consider an interior penalty discontinuous approximation for symmetric elliptic problems of second order on non–matching grids in this paer. The main result is an almost optimal error estimate for the interior penalty approximation of the original problem based on the partition of the domain into a finite number of subdomains. Further, an error analysis for the finite element approximation o...

متن کامل

Properties of Projection and Penalty Methods for Discretized Elliptic Control Problems

In this paper, properties of projection and penalty methods are studied in connection with control problems and their discretizations. In particular, the convergence of an interior-exterior penalty method applied to simple state constraints as well as the contraction behavior of projection mappings are analyzed. In this study, the focus is on the application of these methods to discretized cont...

متن کامل

Schwarz Domain Decomposition Preconditioners for Interior Penalty Approximations of Elliptic Problems

We present a two-level non-overlapping additive Schwarz method for Discontinuous Galerkin approximations of elliptic problems. In particular, a two level-method for both symmetric and non-symmetric schemes will be considered and some interesting features, which have no analog in the conforming case, will be discussed. Numerical experiments on non-matching grids will be presented.

متن کامل

Numerical Experiments with an Interior-Exterior Point Method for Nonlinear Programming

The paper presents an algorithm for solving nonlinear programming problems. The algorithm is based on the combination of interior and exterior point methods. The latter is also known as the primaldual nonlinear rescaling method. The paper shows that in certain cases when the interior point method (ipm) fails to achieve the solution with the high level of accuracy, the use of the exterior point ...

متن کامل

Magnetic Edge States

Magnetic edge states are responsible for various phenomena of magneto-transport. Their importance is due to the fact that, unlike the bulk of the eigenstates in a magnetic system, they carry electric current along the boundary of a confined domain. Edge states can exist both as interior (quantum dot) and exterior (anti-dot) states. In the present report we develop a consistent and practical spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 225  شماره 

صفحات  -

تاریخ انتشار 2007